19-P040 Molecular analysis of spinal cord regeneration in Axolotl

نویسندگان

  • Akira Tazaki
  • Levan Mchedlishvili
  • Elly Tanaka
چکیده

sue is known as transdifferentiation, in which the local cells are able to dedifferentiate (lose the characteristics of their origin) and subsequently redifferentiate. Our lab has shown by transient lineage tracing that spinal cord cells (radial glial cells) can migrate into surrounding tissues and contribute to non-neural cells during regeneration [Science 298 (2002) 1993–1996]. In order to follow cell lineages in long-term regeneration conditions, we have developed a transgenic axolotl in which we can target specific cell types and change their fluorescence by Cre mediated recombination. This way we can study specific cell types for long-term lineage tracing during regeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells

The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog Xenopus laevis, and a quiescent, activatable state in a slowly growing adult salamander Ambystoma mexicanum, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebr...

متن کامل

Germline Transgenic Methods for Tracking Cells and Testing Gene Function during Regeneration in the Axolotl

The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma ...

متن کامل

CRISPR-Mediated Genomic Deletion of Sox2 in the Axolotl Shows a Requirement in Spinal Cord Neural Stem Cell Amplification during Tail Regeneration

The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC) and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) in the knockou...

متن کامل

A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors.

Complete regeneration of the spinal cord occurs after tail regeneration in urodele amphibians such as the axolotl. Little is known about how neural progenitor cells are recruited from the mature tail, how they populate the regenerating spinal cord, and whether the neural progenitor cells are multipotent. To address these issues we used three types of cell fate mapping. By grafting green fluores...

متن کامل

Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration.

Tail regeneration in urodeles requires the coordinated growth and patterning of the regenerating tissues types, including the spinal cord, cartilage and muscle. The dorsoventral (DV) orientation of the spinal cord at the amputation plane determines the DV patterning of the regenerating spinal cord as well as the patterning of surrounding tissues such as cartilage. We investigated this phenomeno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2009